Series Divergence via Asymptotic Behavior
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Since
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when n is big we have

So, the asymptotic behavior of the series
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reflects that of L times the harmonic series, which diverges.
We can make a formal argument by showing s, is at least
some multiple of L/n when n is beyond a threshold and, thus,
the tail of the series is bounded below by a multiple of the

tail of the harmonic series (which sums to o).



Proof

Since {n-s,} converges to L, there is N € N such that
L
|n-s,—L| <3 for all n > N.

This implies, for all n = N,
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where the final equality holds since removing a finite number
of terms from a divergent series leaves its asymptotic
behavior unchanged, making the truncated harmonic series
diverge. Since the sum of the first N — 1 summands s, is

finite, we conclude
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