
Krasnosel’skĭı-Mann Iteration

an elegant and powerful abstraction
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Background

†
Throughout, vectors are assumed to be in Rn

, although results apply more generally

Observation

Many engineering problems reduce to finding a steady state or an equilibrium

Goal

Model problems and solution techniques, abstracting away unnecessary details

Approach

For an operator T , consider the fixed point problem†

find xì such that T (xì) = xì
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Operator Definitions

Norm of a vector x is given by ΩxΩ = ”
x � x , where � is used for dot products

An operator Q is nonexpansive provided it is 1-Lipschitz, i.e.

ΩQ(x) � Q(y )Ω & Ωx � yΩ, for all x and y

An operator T is averaged is there is ↵ " (0, 1) and nonexpansive Q such that

T (x) = (1 � ↵)x + ↵Q(x) = x + ↵�Q(x) � x⌥ for all x and y

An operator F is a contraction if there is L " [0, 1) such that

ΩF (x) � F (y )Ω & LΩx � yΩ, for all x and y
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Operator Illustrations

ì
Formal definition of the shown scaled relative graphs is beyond scope of talk

Each operator class corresponds to a circle in the planeì

L 1

Contractive

1 � ↵ 1

Averaged

1

Nonexpansive
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Operator Relations

{Contractive Operators} L {Averaged Operators} L {Nonexpansive Operators}

Contractive

Averaged

Nonexpansive

proofs in appendix
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Banach Fixed Point Theorem

If F is a contraction, then it has a unique fixed point xì and the iteration

x k+1 = F (x k )
generates a sequence {x k} converging to xì with

Ωx k+1 � xìΩ & LkΩx 1 � xìΩ for all k

Each contraction has a unique fixed point

Nonexpansive operator might not have fixed points (e.g. T (x) = x + 1 for x " R)
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Proof – Banach Fixed Point Theorem

Convergence Given " > 0, it suffices to show {x k} is Cauchy, i.e. for some index N

Ωx n � xmΩ & " for all m, n ' N

For n ' m, repeated use of triangle inequality and L-Lipschitz property yields

Ωx n � xmΩ & Ωx n � x n�1Ω + ⇧ + Ωxm+1 � xmΩ
& Ln�2Ωx 2 � x 1Ω + ⇧ + Lm�1Ωx 2 � x 1Ω

This implies

Ωx n � xmΩ & Ωx 2 � x 1Ω �
n�2

=
k=m�1

Lk = Lm�1Ωx 2 � x 1Ω �
n�m�1

=
k=0

Lk & Lm�1Ωx 2 � x 1Ω
1 � L

Convergence follows by picking N large enough to ensure LN�1Ωx 2 � 1Ω & (1 � L)"
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Proof – Banach Fixed Point Theorem

Limit is Fixed Point Since F is Lipschitz, it is continuous and

xì = lim
k�ô

x k+1 = lim
k�ô

F (x k ) = F ⌅ lim
k�ô

x k⌦ = F (xì)
Uniqueness If xì and yì were distinct fixed points, then

0 < Ωxì � yìΩ = ΩF (xì) � F (yì)Ω & LΩxì � yìΩ º 1 < L

a contradiction

Convergence Rate Inductively use L-Lipschitz and fixed point properties to get

Ωx k+1 � xìΩ = ΩF (x k ) � F (xì)Ω & LΩx k � xìΩ & ⇧ & LkΩx 1 � xìΩ
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Problem – Contractions are Too Restrictive

Loosely, in optimization we can map

strongly convex function º contractive operator (Special Case)

convex function º nonexpansive operator (General Case)

In many applications, we have nonexpansive Q rather than contractive F

How can we compute fixed points of nonexpansive operators?

Banach’s theorem does not apply
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Krasnosel’skĭı-Mann Iteration

†
Remaining slides focus on this special case

With nonexpansive Q and positive step sizes {↵k}, update via

x k+1 = (1 � ↵k )x k + ↵kQ(x k ) (KM Update)

If Q has a fixed point, the sequence {x k} converges to a fixed point of Q provided

the step sizes satisfy
ô

=
k=1
↵k (1 � ↵k ) = ô

Special Case†

Set ↵ " (0, 1) and T (x) = (1 � ↵)x + ↵Q(x) to iterate via x k+1 = T (x k )
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Descent Lemma

If T is ↵-averaged and z = T (z), then

ΩT (x) � zΩ2 & Ωx � zΩ2 �
1 � ↵
↵ ΩT (x) � xΩ2 for all x

Rotation Example

x

Q(x)
T (x)

z

ΩT (x) � zΩ2 + ΩT (x) � xΩ2 = Ωx � zΩ2

ΩT (x) � zΩ2 = Ωx � zΩ2 � ΩT (x) � xΩ2

ΩT (x) � zΩ2 & Ωx � zΩ2 � ⌅1 �
1
2⌦ ΩT (x) � xΩ2

Here Q(x) is a counterclockwise rotation of 90 degrees and T (x) = 1
2 (x + Q(x))
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Descent Lemma Proof

Since T is ↵-averaged, there is nonexpansive Q such that

T (x) = (1 � ↵)x + ↵Q(x)
which yields the residual relation

ΩT (x) � xΩ2 = Ω(1 � ↵)x + ↵Q(x) � xΩ2 = ↵2ΩQ(x) � xΩ2

Step 1 – Obtain a dot product bound

Step 2 – Use this bound and residual relation to get result
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Descent Lemma Proof – Step 1

2(Q(x) � x) � (x � z)
= æ(Q(x) � x) + (x � z)æ2 � ΩQ(x) � xΩ2 � Ωx � zΩ2 (Complete Square)

= ΩQ(x) � zΩ2 � ΩQ(x) � xΩ2 � Ωx � zΩ2 (Simplify)

= ΩQ(x) � Q(z)Ω2 � ΩQ(x) � xΩ2 � Ωx � zΩ2 (Fixed Point)

& Ωx � zΩ2 � ΩQ(x) � xΩ2 � Ωx � zΩ2 (Nonexpansive)

= � ΩQ(x) � xΩ2 (Cancel Terms)
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Descent Lemma Proof – Step 2

ΩT (x) � zΩ2

=æ(x � z) + ↵(Q(x) � x)æ2 (Substitute for T )

=Ωx � zΩ2 + 2↵(x � z) � (Q(x) � x) + ↵2ΩQ(x) � xΩ2 (Expand)

&Ωx � zΩ2 + (�↵ + ↵2) ΩQ(x) � xΩ2 (Apply Step 1)

=Ωx � zΩ2 � (1 � ↵)↵ΩQ(x) � xΩ2 (Factor Quadratic)

=Ωx � zΩ2 �
1 � ↵
↵ ΩT (x) � xΩ2 (Residual Relation)
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Convergence Theorem

If there is z such that T (z) = z and T is averaged, then the iteration

x k+1 = T (x k )
generates a sequence {x k} converging a point xì for which xì = T (xì)

x 2

x 1xì

x k+1 = T (x k )

xì = T (xì)

x 2

x 1xì

x k+1 = Q(x k )
Applying rotation yields cycling, but averaging it with identity converges
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Proof – Subsequence Converges

By the descent lemma, for some ↵ " (0, 1),
Ωx k+1 � zΩ2 = ΩT (x k ) � zΩ2 & Ωx k � zΩ2 �

1 � ↵
↵ ΩT (x k ) � x kΩ2 for all k

This implies {Ωx k � zΩ} is monotonically decreasing, and so

Ωx kΩ = Ωx k � z + zΩ & Ωx k � zΩ + ΩzΩ & Ωx 1 � zΩ + ΩzΩ for all k

Thus, {x k} is bounded and the Bolzano-Weierstrass theorem asserts there is a

convergent subsequence {x nk } with limit xì
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Proof – Limit Point is Fixed Point

By the descent lemma,

ΩT (x k ) � x kΩ2 & ↵
1 � ↵ ⇥Ωx k � zΩ � Ωx k+1 � zΩ�

This yields the telescoping series

ô

=
k=1

ΩT (x k ) � x kΩ2 & ↵
1 � ↵ ⌅Ωx 1 � zΩ2 � lim

N�ô
ΩxN � zΩ2⌦ & Ωx 1 � zΩ2

1 � ↵

Since the series converges, its summands converge to zero, i.e.

0 = lim
k�ô

ΩT (x nk ) � x nkΩ =
¬¬¬¬¬¬¬¬T ⌅ lim

k�ô
x nk ⌦ � lim

k�ô
x nk

¬¬¬¬¬¬¬¬ = ΩT (xì) � xìΩ
where second equality holds as both T and norms are continuous
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Proof – Entire Sequence Converges (Intuition)

Since x nk � xì and {Ωx k � xìΩ} is monotonically decreasing, we get x n � xì

distance

to limit

index

"

nk

Ωx 1 � xìΩ

Ωx nK � xìΩ

Plot of {Ωx n � xìΩ}, with green dots showing subsequence {Ωx nk � xìΩ}
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Proof – Entire Sequence Converges (Formal)

†
Apply first step in proof with z = xì

, noting we only assumed z = T (z)

Given " > 0, the fact x nk � xì implies there is an index K such that

Ωx nk � xìΩ & " for all k ' K

As xì = T (xì), the sequence {Ωx k � xìΩ} is monotonically decreasing,† and so

Ωx n � xìΩ & Ωx nK � xìΩ & " for all n ' nK

Hence x k � xì ⌅
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Monotonicity of Fixed Point Iteration

For averaged T and contractive F , the residual Ωx k+1 � x kΩ2 decays monotonically

Ωx k+1 � x kΩ2 = O(1/k)

Ωx k+1 � x kΩ2 = O(Lk )
log � Residual ⌥

Iteration k

Checking residual monotonicity can be useful for debugging code proofs in appendix

21



Summary

• Three operator classes are of interest: contractive, averaged, nonexpansive

• Banach’s theorem shows fast convergence with contractive fixed point updates

• Fixed point iteration with averaged operators converges

• Krasnosel’skĭı-Mann iteration converges even with nonexpansive operators
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Appendix – Averaged º Nonexpansive

For an averaged operator T ,

ΩT (x) � T (y )Ω = Ω(1 � ↵)x + ↵Q(x) � (1 � ↵)y � Q(y )Ω (Substitute)

= Ω(1 � ↵)(x � y ) + ↵(Q(x) � Q(y ))Ω (Rearrange)

& (1 � ↵)Ωx � yΩ + ↵ΩQ(x) � Q(y )Ω (Triangle Inequality)

& (1 � ↵)Ωx � yΩ + ↵Ωx � yΩ (Nonexpansive)

= Ωx � yΩ (Simplify)
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Appendix – Contractive º Averaged

Consider a contraction F with L " [0, 1) and define

Q(x) = 2
1 + L

⌅F (x) � 1 � L
2 x⌦

Note Q is nonexpansive since, by the triangle inequality and fact F is L-Lipschitz,

ΩQ(x) � Q(y )Ω & 2
1 + L

⌅L +
1 � L

2 ⌦ Ωx � yΩ = Ωx � yΩ
Rearranging the formula for Q reveals

F (x) = ⌅1 �
1 + L

2 ⌦ x +
1 + L

2 Q(x) º F is averaged
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Appendix – Rates of Convergence

Monotonicity holds for averaged T since

Ωx k+1 � x kΩ = ΩT (x k ) � T (x k�1)Ω & Ωx k � x k�1Ω
Applying this with the telescoping series in proof of key result gives

kΩx k+1�x kΩ2 &
k

=
i=1

ΩT (x i )�x iΩ2 & Ωx 1 � zΩ2

1 � ↵ º Ωx k+1�x kΩ2 & Ωx 1 � zΩ2

(1 � ↵)k

For contractive F ,

Ωx k+1 � x kΩ = ΩF (x k ) � F (x k�1)Ω & LΩx k � x k�1Ω & ⇧ & Lk �
Ωx 2 � x 1Ω

L
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