Krasnosel'skii-Mann Iteration

an elegant and powerful abstraction

Typal Academy る

Observation

Many engineering problems reduce to finding a steady state or an equilibrium

Goal

Model problems and solution techniques, abstracting away unnecessary details

Approach

For an operator T, consider the fixed point problem[†]

find x^* such that $T(x^*) = x^*$

[†]Throughout, vectors are assumed to be in \mathbb{R}^n , although results apply more generally

Norm of a vector x is given by $||x|| = \sqrt{x \cdot x}$, where \cdot is used for dot products

An operator Q is nonexpansive provided it is 1-Lipschitz, *i.e.*

 $||Q(x) - Q(y)|| \le ||x - y||$, for all x and y

An operator T is averaged is there is $\alpha \in (0, 1)$ and nonexpansive Q such that

$$T(x) = (1 - \alpha)x + \alpha Q(x) = x + \alpha (Q(x) - x) \text{ for all } x \text{ and } y$$

An operator F is a contraction if there is $L \in [0, 1)$ such that

 $||F(x) - F(y)|| \le L||x - y||$, for all x and y

Operator Illustrations

Each operator class corresponds to a circle in the plane*

^{*}Formal definition of the shown scaled relative graphs is beyond scope of talk

{Contractive Operators} c {Averaged Operators} c {Nonexpansive Operators}

proofs in appendix

If F is a contraction, then it has a unique fixed point x^* and the iteration

 $x^{k+1} = F(x^k)$

generates a sequence $\{x^k\}$ converging to x^* with

 $||x^{k+1} - x^{\star}|| \le L^k ||x^1 - x^{\star}||$ for all k

Each contraction has a unique fixed point

Nonexpansive operator might not have fixed points $(e.g. T(x) = x + 1 \text{ for } x \in \mathbb{R})$

Convergence Given $\varepsilon > 0$, it suffices to show $\{x^k\}$ is Cauchy, *i.e.* for some index N

$$||x^n - x^m|| \le \varepsilon$$
 for all $m, n \ge N$

For $n \ge m$, repeated use of triangle inequality and L-Lipschitz property yields

$$\begin{aligned} \|x^{n} - x^{m}\| &\leq \|x^{n} - x^{n-1}\| + \dots + \|x^{m+1} - x^{m}\| \\ &\leq L^{n-2} \|x^{2} - x^{1}\| + \dots + L^{m-1} \|x^{2} - x^{1}\| \end{aligned}$$

This implies

$$\|x^{n} - x^{m}\| \le \|x^{2} - x^{1}\| \cdot \sum_{k=m-1}^{n-2} L^{k} = L^{m-1} \|x^{2} - x^{1}\| \cdot \sum_{k=0}^{n-m-1} L^{k} \le \frac{L^{m-1} \|x^{2} - x^{1}\|}{1 - L}$$

Convergence follows by picking N large enough to ensure $L^{N-1} ||x^2 - 1|| \le (1 - L)\varepsilon^{N-1}$

Limit is Fixed Point Since F is Lipschitz, it is continuous and

$$x^{\star} = \lim_{k \to \infty} x^{k+1} = \lim_{k \to \infty} F(x^k) = F\left(\lim_{k \to \infty} x^k\right) = F(x^{\star})$$

Uniqueness If x^* and y^* were distinct fixed points, then $0 < ||x^* - y^*|| = ||F(x^*) - F(y^*)|| \le L||x^* - y^*|| \implies 1 < L$ a contradiction

Convergence Rate Inductively use L-Lipschitz and fixed point properties to get

$$\|x^{k+1} - x^{\star}\| = \|F(x^{k}) - F(x^{\star})\| \le L\|x^{k} - x^{\star}\| \le \dots \le L^{k}\|x^{1} - x^{\star}\|$$

Problem – Contractions are Too Restrictive

Loosely, in optimization we can map

strongly convex function \implies contractive operator (Special Case) convex function \implies nonexpansive operator (General Case)

In many applications, we have nonexpansive Q rather than contractive F

How can we compute fixed points of nonexpansive operators?

Banach's theorem does not apply

With nonexpansive Q and positive step sizes $\{\alpha_k\}$, update via

$$x^{k+1} = (1 - \alpha_k)x^k + \alpha_k Q(x^k)$$
 (KM Update)

If Q has a fixed point, the sequence $\{x^k\}$ converges to a fixed point of Q provided the step sizes satisfy

$$\sum_{k=1}^{\infty} \alpha_k (1 - \alpha_k) = \infty$$

Special Case[†]

Set $\alpha \in (0, 1)$ and $T(x) = (1 - \alpha)x + \alpha Q(x)$ to iterate via $x^{k+1} = T(x^k)$

[†]Remaining slides focus on this special case

Descent Lemma

If T is α -averaged and z = T(z), then

$$\|T(x) - z\|^2 \le \|x - z\|^2 - \frac{1 - \alpha}{\alpha} \|T(x) - x\|^2$$
 for all x

Here Q(x) is a counterclockwise rotation of 90 degrees and $T(x) = \frac{1}{2}(x + Q(x))$

Descent Lemma Proof

Since T is α -averaged, there is nonexpansive Q such that

 $T(x) = (1 - \alpha)x + \alpha Q(x)$

which yields the residual relation

$$||T(x) - x||^{2} = ||(1 - \alpha)x + \alpha Q(x) - x||^{2} = \alpha^{2} ||Q(x) - x||^{2}$$

Step 1 – Obtain a dot product bound

Step 2 – Use this bound and residual relation to get result

$2(Q(x) - x) \cdot (x - z)$	
$= \left\ (Q(x) - x) + (x - z) \right\ ^{2} - \left\ Q(x) - x \right\ ^{2} - \left\ x - z \right\ ^{2}$	(Complete Square)
$= Q(x) - z ^{2} - Q(x) - x ^{2} - x - z ^{2}$	(Simplify)
$= Q(x) - Q(z) ^{2} - Q(x) - x ^{2} - x - z ^{2}$	(Fixed Point)
$\leq x - z ^{2} - Q(x) - x ^{2} - x - z ^{2}$	(Nonexpansive)
$= - Q(x) - x ^{2}$	(Cancel Terms)

$$\begin{aligned} \|T(x) - z\|^{2} & (\text{Substitute for } T) \\ &= \|(x - z) + \alpha(Q(x) - x)\|^{2} & (\text{Substitute for } T) \\ &= \|x - z\|^{2} + 2\alpha(x - z) \cdot (Q(x) - x) + \alpha^{2} \|Q(x) - x\|^{2} & (\text{Expand}) \\ &\leq \|x - z\|^{2} + (-\alpha + \alpha^{2}) \|Q(x) - x\|^{2} & (\text{Apply Step 1}) \\ &= \|x - z\|^{2} - (1 - \alpha)\alpha \|Q(x) - x\|^{2} & (\text{Factor Quadratic}) \\ &= \|x - z\|^{2} - \frac{1 - \alpha}{\alpha} \|T(x) - x\|^{2} & (\text{Residual Relation}) \end{aligned}$$

Convergence Theorem

If there is z such that T(z) = z and T is averaged, then the iteration

$$x^{k+1} = T(x^k)$$

generates a sequence $\{x^k\}$ converging a point x^* for which $x^* = T(x^*)$

Applying rotation yields cycling, but averaging it with identity converges

Proof – Subsequence Converges

By the descent lemma, for some $\alpha \in (0, 1)$,

$$\|x^{k+1} - z\|^2 = \|T(x^k) - z\|^2 \le \|x^k - z\|^2 - \frac{1 - \alpha}{\alpha} \|T(x^k) - x^k\|^2$$
 for all k

This implies $\{\|x^k - z\|\}$ is monotonically decreasing, and so

$$||x^{k}|| = ||x^{k} - z + z|| \le ||x^{k} - z|| + ||z|| \le ||x^{1} - z|| + ||z||$$
 for all k

Thus, $\{x^k\}$ is bounded and the Bolzano-Weierstrass theorem asserts there is a convergent subsequence $\{x^{n_k}\}$ with limit x^*

By the descent lemma,

$$\|T(x^{k}) - x^{k}\|^{2} \le \frac{\alpha}{1 - \alpha} (\|x^{k} - z\| - \|x^{k+1} - z\|)$$

This yields the telescoping series

$$\sum_{k=1}^{\infty} \|T(x^{k}) - x^{k}\|^{2} \le \frac{\alpha}{1 - \alpha} \left(\|x^{1} - z\|^{2} - \lim_{N \to \infty} \|x^{N} - z\|^{2} \right) \le \frac{\|x^{1} - z\|^{2}}{1 - \alpha}$$

Since the series converges, its summands converge to zero, *i.e.*

$$0 = \lim_{k \to \infty} \left\| \mathcal{T}(x^{n_k}) - x^{n_k} \right\| = \left\| \mathcal{T}\left(\lim_{k \to \infty} x^{n_k} \right) - \lim_{k \to \infty} x^{n_k} \right\| = \left\| \mathcal{T}(x^{\star}) - x^{\star} \right\|$$

where second equality holds as both ${\mathcal T}$ and norms are continuous

Since $x^{n_k} \to x^*$ and $\{\|x^k - x^*\|\}$ is monotonically decreasing, we get $x^n \to x^*$

Plot of $\{\|x^n - x^*\|\}$, with green dots showing subsequence $\{\|x^{n_k} - x^*\|\}$

Given $\varepsilon > 0$, the fact $x^{n_k} \to x^*$ implies there is an index K such that

 $||x^{n_k} - x^*|| \le \varepsilon \quad \text{for all } k \ge K$

As $x^* = T(x^*)$, the sequence $\{||x^k - x^*||\}$ is monotonically decreasing,[†] and so

 $\|x^n - x^*\| \le \|x^{n_{\mathcal{K}}} - x^*\| \le \varepsilon \quad \text{for all } n \ge n_{\mathcal{K}}$

Hence $x^k \rightarrow x^*$

[†]Apply first step in proof with $z = x^*$, noting we only assumed z = T(z)

Monotonicity of Fixed Point Iteration

For averaged T and contractive F, the residual $||x^{k+1} - x^k||^2$ decays monotonically

Checking residual monotonicity can be useful for debugging code

proofs in appendix

• Three operator classes are of interest: contractive, averaged, nonexpansive

• Banach's theorem shows fast convergence with contractive fixed point updates

• Fixed point iteration with averaged operators converges

• Krasnosel'skii-Mann iteration converges even with nonexpansive operators

- Ryu, Yin. Large Scale Convex Optimization: Algorithms and Analysis via Monotone Operators. 2023.
- Bauschke, Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. 2017.
- Cegielski. Iterative Methods for Fixed Point Problems in Hilbert Spaces. 2012.

For an averaged operator T,

 $\|T(x) - T(y)\| = \|(1 - \alpha)x + \alpha Q(x) - (1 - \alpha)y - Q(y)\|$ (Substitute) $= \|(1 - \alpha)(x - y) + \alpha(Q(x) - Q(y))\|$ (Rearrange) $\leq (1 - \alpha)\|x - y\| + \alpha\|Q(x) - Q(y)\|$ (Triangle Inequality) $\leq (1 - \alpha)\|x - y\| + \alpha\|x - y\|$ (Nonexpansive) $= \|x - y\|$ (Simplify) Consider a contraction F with $L \in [0, 1)$ and define

$$Q(x) = \frac{2}{1+L} \left(F(x) - \frac{1-L}{2} x \right)$$

Note Q is nonexpansive since, by the triangle inequality and fact F is L-Lipschitz,

$$\|Q(x) - Q(y)\| \le \frac{2}{1+L} \left(L + \frac{1-L}{2}\right) \|x - y\| = \|x - y\|$$

Rearranging the formula for Q reveals

$$F(x) = \left(1 - \frac{1+L}{2}\right)x + \frac{1+L}{2}Q(x) \implies F \text{ is averaged}$$

Monotonicity holds for averaged T since

$$||x^{k+1} - x^{k}|| = ||T(x^{k}) - T(x^{k-1})|| \le ||x^{k} - x^{k-1}||$$

Applying this with the telescoping series in proof of key result gives

$$k \|x^{k+1} - x^{k}\|^{2} \le \sum_{i=1}^{k} \|T(x^{i}) - x^{i}\|^{2} \le \frac{\|x^{1} - z\|^{2}}{1 - \alpha} \implies \|x^{k+1} - x^{k}\|^{2} \le \frac{\|x^{1} - z\|^{2}}{(1 - \alpha)k}$$

For contractive F,

$$\|x^{k+1} - x^k\| = \|F(x^k) - F(x^{k-1})\| \le L\|x^k - x^{k-1}\| \le \dots \le L^k \cdot \frac{\|x^2 - x^1\|}{L}$$