Baillon-Haddad Theorem

a bridge from functions to monotone operators
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Overview

Smoothness bounds gradients and aligns them with the path of descent

Baillon-Haddad Theorem

(convex) + (L-smooth) = ( —cocoercive)
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Significance
® Bridges convex analysis and monotone operator theory

® Simplifies convergence proofs for popular methods (e.g. gradient descent)



Convexity and Bregman Divergences

For a differentiable function f:R" — R, the Bregman divergence Ds is

De(x,y) = f(x)=f(y) = (x=y) -VFf(y).

Convexity of f ensures the Bregman divergence is always nonnegative,

i.e. the linear estimate from y to x never exceeds function value at x.
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L-smooth Functions

A differentiable function f:R” — R is L-smooth provided Vf is L-Lipschitz, i.e.
|V £(x)=vF(y)| < L|lx-y|l, forall x and y.

Descent Lemma If f is L-smooth, then

L
f(x)=f(y)+(x—y) -Vf(y)+ §||X —y||?, forall x and y.
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Operators

Each operator herein is a function mapping from R” to R".

An operator @ is nonexpansive provided it is 1-Lipschitz, i.e.

1Q(x) = @)l =[x = yll, forall xand y.

An operator T is averaged is there is a € (0, 1) and nonexpansive @ such that

T(x)=(1-a)x+aQ(x)=x+a(Q(x)—x), forall xandy.

An operator C is 3-cocoercive provided

(x—y)-(C(x)-C(y)) zB]|C(x) - C(y)||2, for all x and y.



Baillon-Haddad Theorem

If f:R" = R is convex and L-smooth, then the gradient Vf is %—cocoercive, I.e.

(x—y)- (Vf(x) —Vf(y)) > % |V f(x) =vFf(y)||?, for all x and y.

Angle between x — y and Vf(x) —Vf(y) is acute

Projection of x — y onto line has length = %va(x) =iyl

Vf(x)=Vf(y)
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Proof — Baillon-Haddad Theorem

Let x and y be given, and set z = x — %(Vf(x) —Vf(y)). Since f is L-smooth,
L 2 L 2
0=f(x)-f(z)+(z-x)-VFf(x)+ §||Z —x||" = =-D¢(z, x) + §||z - x||”.
Algebraic manipulations reveal
Dr(2,x) = Dy(z,y) = Dr(x,y) + (x = 2) - (V F(x) = ¥F (1) ).
These two equations together imply
L
Dr(x,v) = Dy(z,y) + (x = 2) - (VF(x) =VF(y)) = 5llz = xI
L
> (x = 2) - (VF(x) = v7(0)) - 511z = x|,

where the final inequality holds since convexity of f implies D¢(z,y) = 0.



Proof — Baillon-Haddad Theorem

Substituting for our choice of z yields

Dr(x.y) = (x = 2) - (V £(x) =97 (1)) - 5llz = I

117 F() = v ()2
Analogous argument shows
Dr(y.x) 2 oIV () =V ().
Adding these inequalities yields
TV 70 =9 ()P < Dex, v) + Dr(y. x)

= (x=y) - (V00 -vF()



Gradient Descent Convergence

If @ € (0,2/L) and f is convex, L-smooth and has a minimizer, then the iteration

XM= X~ av(xF)
produces {x*} converging to a minimizer of f and ||V F(x*)||? = O(1/k).

Proof Set T(x) = x — aV f(x) so that x*** = T(x¥). It suffices to show'

1) T is averaged, and
2) minimizers of f coincide with fixed points of T.

Since f is convex and L-smooth, VT is %—cocoercive.

TSee previous lecture on Krasnosel'skii-Mann iteration.



Gradient Descent with 2/L = Nonexpansive

Set Q(x) = x — %Vf(x). The %—cocoercivity of Vf implies, for all x and vy,

1Q(x) = @)II?

~lx = yI2 = 20c= 0TV 00 =97 (1) + 5119 76) =9 F ()1

=1 = | =) T(7 760 =95 0) = 219 ) = 9F I
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=0

2
<|lx = yII*.

Taking square roots yields [|@(x) = Q(y)[| = ||x = y||. and so @ is nonexpansive.



Update is Averaged and Fixed Points are Minimizers

Setting 6 = aL /2 yields 6 € (0,1) and

T(X):X_2_L9Vf(x)=(1—9)x+9Q(X) = T is averaged.

For convex and differentiable f,
x* minimizes f < 0=Vf(x")
= 0=-aVf(x")

x* —avf(x")

|

= x" = T(x").



Summary

® Together L-smoothness and convexity of f yield %— cocoercivity of Vf
® Baillon-Haddad theorem links smooth functions to monotone operator theory

® Enables simple algorithm design and analysis
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