Gradient Descent

a classic algorithm seen through operators

/ level curves of f
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Motivation

“Turns out walking downhill is a powerful idea.” — a convex philosopher

Problem Minimize a smooth and convex function f

Algorithm  Given initial point x! € R" and step size a > 0, update via
Xt = XK - avF(xF)

Why it matters

Widespread Standard method across science and engineering

Fundamental Core part of many modern optimization algorithms



Problem Setting

Given

A convex and L-smooth function f:R"” - R

Problem
Find the minimizer x*, i.e. solve min f(x)
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Definitions

Each operator is a function mapping R” to R".

An operator @ is nonexpansive if it is 1-Lipschitz, /.e.
1Q(x) = Q) = llx = yll. forall x and y.
An operator T is averaged if there is a € (0,1) and nonexpansive @ such that
T(x)=(1-a)x+aQ(x)=x+a(Q(x)—x) forall xandy.

An operator F is L-contractive if there is L € [0, 1) such that

|F(x) = F(y)|| = L||x=y]||. forall xandy.



Optimality and Fixed Point Equivalence

Lemma 1 If f is convex and differentiable, & > 0 and an operator T is defined by
T(x)=x-aVf(x),

then x* is a minimizer of f if and only if x* = T(x).

Proof By the first-order optimality condition for f,

x* minimizes f e 0=Vf(x") (optimality condition)
= 0=-aVf(x") (multiply by —a)
= x"=T(["). (add x* and use definition of T)

The result follows by transitivity of logical equivalences. [



Cocercivity =— Nonexpansiveness

Lemma 2 If f is convex and L-smooth, then Q(x) = x — %Vf(x) is nonexpansive.

Proof By the Baillon-Haddad theorem,Jr Vf is %—cocoercive. This implies
® » 4 T 4 2
1Q(x) = QI =llx = ¥II = F(x =) (V) =VF (1)) + T3 19 () =7F ()l

“[lx-yl2- 7 [(x - (V) =9F() = 19 7(x) —wu)nﬂ

v

>0
2
=[x = yllI",

for all x and y. Taking square roots yields ||Q(x) = Q(y)|| = ||x - yI|. u

TSee prior lecture about this theorem for its details and proof.



Gradient Descent Convergence

Theorem 1 If a € (0,2/L) and f is convex, L-smooth and has a minimizer, then

T(x) = x—aVf(x)is averaged and has a fixed point, which is a minimizer of f.

The following corollary applies the result of Krasnosel'skil and Mann.

k+1

Corollary 1 The gradient descent iteration x*™* = T(x*) generates a sequence

{x*} converging to a minimizer of f with ||V F(x*)||? = O(1/k).



Gradient Descent Proofs

Theorem 1 Proof Set § = al /2 so that § € (0,1) and, by Lemma 2,

T(X):X—¥Vf(x)=9X+(1—9)Q(X) = T is averaged.

Since f has a minimizer x*, Lemma 1 asserts x” is a fixed point of T.

Corollary 1 Proof Because T is averaged with a fixed point, the
T _k+1

Krasnosel'skii-Mann iteration' x = T(xk) converges to a fixed point, i.e

minimizer of f. Moreover,

2 e 112 k+1 kg2 1
9 I = I == 0 1),

TSee prior lecture on Krasnosel'skii-Mann iteration for convergence result and proof.



Gradient Descent in 1D

The iteration
KLk af:(xk)

. k *
yields x~ — x

Steps get smaller as

I
slope f decreases




Gradient Descent in 2D

k+1

The iteration x*** = x¥ — aV £(x*) ensures {x*} converges to the minimizer x*

1
X

/- level curves of f

f(x") = minf(x) = min {In (1+722) +1n(1+722) +1n(1+ e_Xl)}

X



Strong Convexity

Recall a function f is u-strongly convex provided
f(y) = f(x)+VFf(x):(y—x)+ %Hy — x||?, forall x and y.
\‘ strongly convex f
\4 quadratic lower bound
} >

X

Baillon and Haddad's result may be strengthened when f is strongly convex.

Lemma 3 If f is u-strongly convex and L-smooth, then

1
L+

(VF(x) =VF()) - (x = y) = == [ 7 F(x) =VFIIP + Lullx = vII2].

for all x and y.



Smooth + Strongly Convex =— Contractive

Theorem 2 If f is L-smooth and u-strongly convex and a € (0,2/L), then the

operator T(x) = x — aV f(x) is f-contractive with 8 = max{|1 — au|, |1 — aL]|}.

The following corollary is a direct application of Banach’s fixed point theorem.

Corollary 2 For each x* € R, the iteration x*** = T(x*) generates a sequence

{x*} converging to the unique minimizer of f with ||V £(x*)|| = 0(8").

— Gradient descent converges linearly for smooth and strongly convex f.



Contractive Gradient Descent Operator Proof

Let x,y € R" and a € (0,2/L) be given. It suffices to show
I70) = T = max{[1 —aul, [1-aLl}x -yl
Squaring and expanding the left hand side yields
ITC) = TN = llx=ylI* +o* | 7 £(x) =vF()II°
- 20 (VF(x) =VF(y)) - (x - y).

Lemma 3 may be applied to deduce

176 = TP = (1= 228l = 11 + (02 = 52 ) 190 -7 I

L+ pu



Contractive Gradient Descent Operator Proof

By the u-strong convexity and L-smoothness of f,

=V ) =VEWl = —pllx =yl and [[VF0) =Vl < Lllx = yll.
Thus, if 0 < a = 72, then'

2 2a

& L+ u

Similarly, if LT“ < a < =, then

2 ple’ 2 2 2 2a 2
[a _L+M)||w(x>_w(y)|| < 2= 2 - yI?

)||w<x>—w<y)||2 <1 (a*- 25 ) -yl

Note the expression is negative when 0 < a < L%



Contractive Gradient Descent Operator Proof

Combining the bounds and simplifying reveals

(1-au)’llx-y|l®> ifosas L%u

(1-al)’|lx-yl? ifﬁ <as2

IT0) =TI =

Since L 2 4 and a > 0,
2

2 2
r+n = (1-al) =(1-awp)’.

a =

This implies the bound on || T(x) = T(y)||? in each case for a is the maximum

of (1 — ap)? and (1 — aL)?. Thus, these cases may combined to obtain

I7(x) = TOOI? = max{(1 = au)®, (1-al)’}Ix-y*

Taking square roots yields the result. [



Convergence Rate Plots

For [-smooth and convex or L smooth and wu-strongly convex f, we can bound

k+1

the rate of convergence of the residual |[x**! = x*|| = a|| vV £(x*)|| to zero.

log ( Residual )

Iteration k



Takeaways

Gradient descent is a fixed point iteration for T(x) = x — aV f(x)

When f is convex and L-smooth, T is averaged

When f is pu-strongly convex and L-smooth, T is contractive

When T is averaged or contractive, fixed-point convergence results apply
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Appendix — Baillon-Haddad-type Inequality

Lemma 3 If f is u-strongly convex and L-smooth, then

(V7 (x) =9F() - (x =) = 5 LIV F0) =9I + Lullx = yI17],

for all x and y.

Proof We proceed in two steps.
1. If f is p-strongly convex and L-smooth, then g(x) = f(x) — u|x]|?/2
is convex and (L — pu)-smooth.

2. If g is convex and L-smooth, then the inequality holds by the result of
Baillon and Haddad.



Step 1: Perturbed function is convex and (L — u)-smooth

Since f is u-strongly convex, g is convex. Let x,y € R" be given. Setting

A =Vf(x)—-Vf(y) and § = x — y, observe Vg(x) = Vf(x) — ux and

1V g(x) =va()II* = |Al1* - 26 (A, 8) + u?l8]1? (expand terms)
< (L-2u){A,8) +u?|68] (Baillon-Haddad)
< (L—2w)l|Allll8]] + u?[l6]? (Cauchy-Schwarz)
< (L -2u)L]|8])7 + w1611 (L-smoothness of f)
= (L-p)?l8ll%. (simplify)

Taking square roots yields

17 9(x)

-va(y)ll =

(L=w)lloll = (L = wllx =¥l



Step 2: Apply Baillon-Haddad Theorem

If w = L, then f is quadratic, i.e. there is ¢ € R” such that
f(x) = %HXH2 +c-x.

In this case, the result follows upon direct substitution. Now suppose L > . As

g is convex and (L — w)-smooth, Baillon and Haddad's theorem asserts
(Va(x) =vg(y)) - (x=y) = 7=
Adding u||x = y|I? + 2u(VF(x) =VF(y)) - (x = y)/(L = ) to each side yields

b (v 700 =970 (x= 1) 2 == [V F00) =9I + Lasllx = 1]

IV g(x) =va(y)*.

Multiplying by (L —u)/(L + u) gives the desired result. [ ]



