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Gradient Descent

a classic algorithm seen through operators
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Motivation

“Turns out walking downhill is a powerful idea.” – a convex philosopher

Problem Minimize a smooth and convex function f

Algorithm Given initial point x
1 ≜ Rn

and step size ω > 0, update via

x
k+1 = x

k ⨼ ω⨽ f (x k )
Why it matters

Widespread Standard method across science and engineering

Fundamental Core part of many modern optimization algorithms



Problem Setting

Given

A convex and L-smooth function f ⋋ Rn → R

Problem

Find the minimizer x
⌐
, i.e. solve min

x≜Rn
f (x )

x
⌐

f (x )



Definitions

Each operator is a function mapping Rn
to Rn

.

An operator Q is nonexpansive if it is 1-Lipschitz, i.e.

⌊Q(x ) ⨼ Q(y )⌊ ∈ ⌊x ⨼ y⌊, for all x and y .

An operator T is averaged if there is ω ≜ (0, 1) and nonexpansive Q such that

T (x ) = (1 ⨼ ω)x + ωQ(x ) = x + ω⌊Q(x ) ⨼ x ⌊ for all x and y .

An operator F is L-contractive if there is L ≜ [0, 1) such that

⌊F (x ) ⨼ F (y )⌊ ∈ L⌊x ⨼ y⌊, for all x and y .



Optimality and Fixed Point Equivalence

Lemma 1 If f is convex and differentiable, ω > 0 and an operator T is defined by

T (x ) = x ⨼ ω⨽ f (x ),
then x

⌐
is a minimizer of f if and only if x

⌐ = T (x⌐).
Proof By the first-order optimality condition for f ,

x
⌐

minimizes f ↢ 0 =⨽f (x⌐) (optimality condition)

↢ 0 = ⨼ω⨽ f (x⌐) (multiply by ⨼ω)

↢ x
⌐ = T (x⌐). (add x

⌐
and use definition of T )

The result follows by transitivity of logical equivalences. ↭



Cocercivity ⟹ Nonexpansiveness

†
See prior lecture about this theorem for its details and proof.

Lemma 2 If f is convex and L-smooth, then Q(x ) = x ⨼ 2
L⨽ f (x ) is nonexpansive.

Proof By the Baillon-Haddad theorem,
† ⨽f is

1
L - cocoercive. This implies

⌊Q(x ) ⨼ Q(y )⌊2 =⌊x ⨼ y⌊2 ⨼
4

L
(x ⨼ y )⊤⌋⨽ f (x ) ⨼⨽f (y )⌋ +

4

L
2 ⌊⨽ f (x ) ⨼⨽f (y )⌊2

=⌊x ⨼ y⌊2 ⨼
4

L
⌋(x ⨼ y )⊤⌋⨽ f (x ) ⨼⨽f (y )⌋ ⨼
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L
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∋0

∈⌊x ⨼ y⌊2
,

for all x and y . Taking square roots yields ⌊Q(x ) ⨼ Q(y )⌊ ∈ ⌊x ⨼ y⌊. ↭



Gradient Descent Convergence

Theorem 1 If ω ≜ (0, 2/L) and f is convex, L-smooth and has a minimizer, then

T (x ) = x ⨼ ω⨽f (x ) is averaged and has a fixed point, which is a minimizer of f .

The following corollary applies the result of Krasnosel’skĭı and Mann.

Corollary 1 The gradient descent iteration x
k+1 = T (x k ) generates a sequence

{x k } converging to a minimizer of f with ⌊⨽ f (x k )⌊2 = O(1/k).



Gradient Descent Proofs

†
See prior lecture on Krasnosel’skĭı-Mann iteration for convergence result and proof.

Theorem 1 Proof Set ε = ωL/2 so that ε ≜ (0, 1) and, by Lemma 2,

T (x ) = x ⨼
2ε

L
⨽ f (x ) = εx + (1 ⨼ ε)Q(x ) ⟹ T is averaged.

Since f has a minimizer x
⌐
, Lemma 1 asserts x

⌐
is a fixed point of T . ↭

Corollary 1 Proof Because T is averaged with a fixed point, the

Krasnosel’skĭı-Mann iteration
†

x
k+1 = T (x k ) converges to a fixed point, i.e.

minimizer of f . Moreover,

ω
2⌊⨽ f (x k )⌊2 = ⌊x

k+1 ⨼ x
k⌊2 = O ⌈ 1

k
⌈ . ↭



Gradient Descent in 1D

f (x )
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The iteration

x
k+1 = x

k ⨼ ωf
⋌(x k )

yields x
k → x

⌐

x
⌐

Steps get smaller as

slope f
⋌
decreases



Gradient Descent in 2D

The iteration x
k+1 = x

k ⨼ ω⨽f (x k ) ensures {x k } converges to the minimizer x
⌐

x
1

x
2

x
⌐

level curves of f

f (x⌐) = min
x

f (x ) = min
x

⌈ln ⌈1 + e
x1+2x2⌉ + ln ⌈1 + e

x1⨼2x2⌉ + ln ⌈1 + e
⨼x1⌉⌉



Strong Convexity

Recall a function f is µ-strongly convex provided

f (y ) ∋ f (x ) +⨽f (x ) ⨲ (y ⨼ x ) + µ
2
⌊y ⨼ x⌊2

, for all x and y .

x

quadratic lower bound

strongly convex f

Baillon and Haddad’s result may be strengthened when f is strongly convex.

Lemma 3 If f is µ-strongly convex and L-smooth, then

(⨽f (x ) ⨼⨽f (y )) ⨲ (x ⨼ y ) ∋
1

L + µ ⌉⌊⨽ f (x ) ⨼⨽f (y )⌊2 + Lµ⌊x ⨼ y⌊2⌉ ,
for all x and y .



Smooth + Strongly Convex ⟹ Contractive

Theorem 2 If f is L-smooth and µ-strongly convex and ω ≜ (0, 2/L), then the

operator T (x ) = x ⨼ ω⨽f (x ) is ε-contractive with ε = max{⌉1 ⨼ ωµ⌉, ⌉1 ⨼ ωL⌉}.
The following corollary is a direct application of Banach’s fixed point theorem.

Corollary 2 For each x
1 ≜ Rn

, the iteration x
k+1 = T (x k ) generates a sequence

{x k } converging to the unique minimizer of f with ⌊⨽ f (x k )⌊ = O(εk ).
→ Gradient descent converges linearly for smooth and strongly convex f .



Contractive Gradient Descent Operator Proof

Let x , y ≜ Rn
and ω ≜ (0, 2/L) be given. It suffices to show

⌊T (x ) ⨼ T (y )⌊ ∈ max{⌉1 ⨼ ωµ⌉, ⌉1 ⨼ ωL⌉}⌊x ⨼ y⌊.
Squaring and expanding the left hand side yields

⌊T (x ) ⨼ T (y )⌊2 = ⌊x ⨼ y⌊2 + ω2⌊⨽ f (x ) ⨼⨽f (y )⌊2

⨼ 2ω (⨽f (x ) ⨼⨽f (y )) ⨲ (x ⨼ y ).
Lemma 3 may be applied to deduce

⌊T (x ) ⨼ T (y )⌊2 ∈ ⌈1 ⨼
2ωLµ

L + µ ⌈ ⌊x ⨼ y⌊2 + ⌈ω2 ⨼
2ω

L + µ⌈ ⌊⨽ f (x ) ⨼⨽f (y )⌊2
.



Contractive Gradient Descent Operator Proof

Note the expression is negative when 0 < ω ∈ 2
L+µ .

By the µ-strong convexity and L-smoothness of f ,

⨼⌊⨽ f (x ) ⨼⨽f (y )⌊ ∈ ⨼µ⌊x ⨼ y⌊ and ⌊⨽ f (x ) ⨼⨽f (y )⌊ ∈ L⌊x ⨼ y⌊.
Thus, if 0 < ω ∈ 2

L+µ , then
†

⌈ω2 ⨼
2ω

L + µ⌈ ⌊⨽ f (x ) ⨼⨽f (y )⌊2 ∈ µ2 ⌈ω2 ⨼
2ω

L + µ⌈ ⌊x ⨼ y⌊2
.

Similarly, if
2

L+µ < ω < 2
L , then

⌈ω2 ⨼
2ω

L + µ⌈ ⌊⨽ f (x ) ⨼⨽f (y )⌊2 ∈ L
2 ⌈ω2 ⨼

2ω

L + µ⌈ ⌊x ⨼ y⌊2
.



Contractive Gradient Descent Operator Proof

Combining the bounds and simplifying reveals

⌊T (x ) ⨼ T (y )⌊2 ∈

⌉⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜
(1 ⨼ ωµ)2⌊x ⨼ y⌊2

if 0 ∈ ω ∈ 2
L+µ

(1 ⨼ ωL)2⌊x ⨼ y⌊2
if

2
L+µ < ω ∈ 2

L .

Since L ∋ µ and ω > 0,

ω ∈
2

L + µ ↢ (1 ⨼ ωL)2 ∈ (1 ⨼ ωµ)2
.

This implies the bound on ⌊T (x ) ⨼ T (y )⌊2
in each case for ω is the maximum

of (1 ⨼ ωµ)2
and (1 ⨼ ωL)2

. Thus, these cases may combined to obtain

⌊T (x ) ⨼ T (y )⌊2 ∈ max ⌜(1 ⨼ ωµ)2
, (1 ⨼ ωL)2⌜ ⌊x ⨼ y⌊2

.

Taking square roots yields the result. ↭



Convergence Rate Plots

For L-smooth and convex or L smooth and µ-strongly convex f , we can bound

the rate of convergence of the residual ⌊x
k+1 ⨼ x

k⌊ = ω⌊⨽ f (x k )⌊ to zero.

⌊x
k+1 ⨼ x

k⌊ = O⌋ 1⌜
k
⌋

⌊x
k+1 ⨼ x

k⌊ = O⌊εk ⌊
log ⌊ Residual ⌊

Iteration k



Takeaways

• Gradient descent is a fixed point iteration for T (x ) = x ⨼ ω⨽ f (x )
• When f is convex and L-smooth, T is averaged

• When f is µ-strongly convex and L-smooth, T is contractive

• When T is averaged or contractive, fixed-point convergence results apply
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Appendix – Baillon-Haddad-type Inequality

Lemma 3 If f is µ-strongly convex and L-smooth, then

(⨽f (x ) ⨼⨽f (y )) ⨲ (x ⨼ y ) ∋
1

L + µ ⌉⌊⨽ f (x ) ⨼⨽f (y )⌊2 + Lµ⌊x ⨼ y⌊2⌉ ,
for all x and y .

Proof We proceed in two steps.

1. If f is µ-strongly convex and L-smooth, then g(x ) = f (x ) ⨼ µ⌊x⌊2/2

is convex and (L ⨼ µ)-smooth.

2. If g is convex and L-smooth, then the inequality holds by the result of

Baillon and Haddad.



Step 1: Perturbed function is convex and (L ⨼ µ)-smooth

Since f is µ-strongly convex, g is convex. Let x , y ≜ Rn
be given. Setting

! =⨽f (x ) ⨼⨽f (y ) and ϑ = x ⨼ y , observe⨽g(x ) =⨽f (x ) ⨼ µx and

⌊⨽g(x ) ⨼⨽g(y )⌊2 = ⌊!⌊2 ⨼ 2µ ⌝!, ϑ⌝ + µ2⌊ϑ⌊2
(expand terms)

∈ (L ⨼ 2µ) ⌝!, ϑ⌝ + µ2⌊ϑ⌊2
(Baillon-Haddad)

∈ (L ⨼ 2µ)⌊!⌊⌊ϑ⌊ + µ2⌊ϑ⌊2
(Cauchy-Schwarz)

∈ (L ⨼ 2µ)L⌊ϑ⌊2 + µ2⌊ϑ⌊2
(L-smoothness of f )

= (L ⨼ µ)2⌊ϑ⌊2
. (simplify)

Taking square roots yields

⌊⨽g(x ) ⨼⨽g(y )⌊ ∈ (L ⨼ µ)⌊ϑ⌊ = (L ⨼ µ)⌊x ⨼ y⌊.



Step 2: Apply Baillon-Haddad Theorem

If µ = L, then f is quadratic, i.e. there is c ≜ Rn
such that

f (x ) =
µ
2
⌊x⌊2 + c ⨲ x .

In this case, the result follows upon direct substitution. Now suppose L > µ. As

g is convex and (L ⨼ µ)-smooth, Baillon and Haddad’s theorem asserts

⌊⨽g(x ) ⨼⨽g(y )⌊ ⨲ (x ⨼ y ) ∋
1

L ⨼ µ⌊⨽g(x ) ⨼⨽g(y )⌊2
.

Adding µ⌊x ⨼ y⌊2 + 2µ(⨽f (x ) ⨼⨽f (y )) ⨲ (x ⨼ y )/(L ⨼ µ) to each side yields

L + µ
L ⨼ µ ⌋⨽ f (x ) ⨼⨽f (y )⌋ ⨲ (x ⨼ y ) ∋

1

L ⨼ µ ⌉⌊⨽ f (x ) ⨼⨽f (y )⌊2 + Lµ⌊x ⨼ y⌊2⌉
Multiplying by (L ⨼ µ)/(L + µ) gives the desired result. ↭


