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Singular Value Thresholding

the proximal of the nuclear norm
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Motivation

“We can’t quite minimize rank, but we can get close enough.” –a proximal wizard

Setting For convex f and the nuclear norm Ω � Ωò, solve

min
X

f (X ) + ΩXΩò

Subproblem of Interest For � > 0, compute nuclear norm proximal operator:

prox�Ω�Ωò(X ) = argmin
Z

�ΩZΩò +
1
2ΩZ � XΩ2

F

Why Subproblem matters

Prevalent Arises in matrix completion, imaging, system identification, etc.

Modular Can use this proximal in algorithms (e.g. proximal gradient, ADMM)



Why Nuclear Norm in Place of Rank

For a matrix X , the notions of rank and nuclear norm are related:

rank(X ) = #{i ⇥ �i > 0} (number of nonzero singular values)

ΩXΩò = =
i
�i (sum of singular values)

Nuclear norm is surrogate for matrix rank, i.e. we approximate rank(X ) ⌅ ΩXΩò

• Rank function is nonconvex and NP-hard to minimize

• Nuclear norm is tightest convex relaxation of rank

• Surrogate problems with this convex relaxation can be efficiently solved



Proximal Operator and Decomposition

†See Theorem 6.46 and Example 6.47 in Beck’s First-Order Methods in Optimization.

The proximal operator for a function � is

prox�(x ) = argmin
z
�(z ) + 1

2Ωz � xΩ2
.

This generalizes the projection onto a set C :

projC(x ) = argmin
z"C

1
2Ωz � xΩ2

.

Theorem 1† For a norm Ω � Ω and � > 0, the proximal can be decomposed via

prox�Ω�Ω(x ) = x � � projC ⇤ x

�
 ,

where C = {z ⇥ ΩzΩò & 1} and Ω � Ωò is the norm dual to Ω � Ω.



Projection of Matrix onto Unit Ball

Lemma 1 Let C be the unit ball {Z ⇥ ΩZΩ2 & 1}. If X = U⌃V
„, then

projC(X ) = UDV
„
, where D = diag(di ) and di = min{�i , 1}.

Proof Given a matrix Z , set S = U
„

ZV so that Z = USV
„. Write S = D + M ,

where D = diag(di ) and any nonzeros of M are off-diagonal. This yields

ΩZ � XΩ2
F = ΩU(S � ⌃)V „Ω2

F = ΩS � ⌃Ω2
F = ΩD � ⌃Ω2

F + ΩMΩ2
F ' ΩD � ⌃Ω2

F .

As the inquality is strict for nonzero M , for optimal Z we have M = 0. Thus,

minΩZΩ2&1
ΩZ � XΩ2

F = minΩDΩ2&1
ΩUDV

„ � XΩ2
F = minΩDΩ2&1

ΩD �⌃Ω2
F =min∂di ∂&1

=
i
(di � �i )2

.

Each diagonal entry di can be independently computed as di = min{�i , 1}. ⌅



Proximal for Nuclear Norm

The soft-thresholding operator S� is an element-wise operator defined by

S�(X )ij = sign(Xij ) � max{∂Xij ∂ � �, 0}.
When X is nonnegative, this simplifies to

S�(X )ij = max{Xij � �, 0}.
Theorem 2 Given a matrix X with SVD U ⌃V

„ and scalar � > 0, the nuclear

norm proximal operator is given by

prox�Ω�Ωò(X ) = U S�(⌃)V „
.



Theorem 2 Proof

†The spectral norm is dual to the nuclear norm.

By the decomposition in Theorem 1,†

prox�Ω�Ωò(X ) = X � � projC ⌅X

�
⌦ ,

where C is as in Lemma 1. Applying Lemma 1 yields

� projC ⌅X

�
⌦ = UDV

„
, where D = diag(di ) and di =

~ÑÑÑÑÇÑÑÑÑÄ
�i if �i & �

� otherwise.

Thus,

prox�Ω�Ωò(X ) = X � UDV
„ = U(⌃ � D)V „ = U S�(⌃)V „

. ⌅



Toy Example

Consider the matrix

X =

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂\

0 3 0

5 0 0

0 0 1

[______________]
=

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂\

0 1 0

1 0 0

0 0 1

[______________]Õ““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “— “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ œ
U

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂\

5 0 0

0 3 0

0 0 1

[______________]Õ““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “— “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ œ
⌃

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂\

1 0 0

0 1 0

0 0 1

[______________]Õ““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “— “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ œ
V „

= U⌃V
„

For � = 2, the nuclear norm proximal for X is

prox2Ω�Ωò(X ) =

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂\

0 1 0

1 0 0

0 0 1

[______________]Õ““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “— “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ œ
U

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂\

3 0 0

0 1 0

0 0 0

[______________]Õ““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “— “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ œ
S2(⌃)

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂\

1 0 0

0 1 0

0 0 1

[______________]Õ““ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “— “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ “ œ
V „

=

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂\

0 1 0

3 0 0

0 0 0

[______________]



Toy Example (Continued)

Singular

Value

Index i

1

2

3

4

5

1 2 3

If �i & 2,

then S2(�i ) = 0

�1

�2

�3

S2(�1)

S2(�2)
S2(�3)



Rank Minimization and Sparsity

For a vector x , notions of sparsity and `1 norm are related:

ΩxΩ0 = #{i ⇥ xi j 0} (number of nonzero values)

ΩxΩ1 = =
i
∂xi ∂ (sum of absolute values)

Rank minimization and sparsity promotion share analogous approximations,

which have analogous proximal operators:

prox�Ω�Ω(x ) = S�(x )
prox�Ω�Ωò(X ) = U S�(⌃)V „



Takeaways

• Nuclear norm is for low-rank matrices like `1 is for sparse vectors

• The nuclear norm proximal formula is prox�Ω�Ωò(X ) = U S�(⌃)V „

• Proximal decomposition results can be helpful in deriving proximal formulas
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