Singular Value Thresholding

the proximal of the nuclear norm

$$\operatorname{prox}_{\lambda \|\cdot\|_*}(U\Sigma V^{\mathsf{T}}) = U S_{\lambda}(\Sigma) V^{\mathsf{T}}$$

Motivation

"We can't quite minimize rank, but we can get close enough." —a proximal wizard

Setting For convex f and the nuclear norm $\|\cdot\|_*$, solve

$$\min_{X} f(X) + ||X||_{*}$$

Subproblem of Interest For $\lambda > 0$, compute nuclear norm proximal operator:

$$\text{prox}_{\lambda \|\cdot\|_*}(X) = \underset{Z}{\operatorname{argmin}} \ \lambda \|Z\|_* + \frac{1}{2} \|Z - X\|_F^2$$

Why Subproblem matters

Prevalent Arises in matrix completion, imaging, system identification, etc.

 $\underline{\mathsf{Modular}} \quad \mathsf{Can} \ \mathsf{use} \ \mathsf{this} \ \mathsf{proximal} \ \mathsf{in} \ \mathsf{algorithms} \ (\mathit{e.g.} \ \mathsf{proximal} \ \mathsf{gradient}, \ \mathsf{ADMM})$

Why Nuclear Norm in Place of Rank

For a matrix X, the notions of rank and nuclear norm are related:

$$\operatorname{rank}(X) = \#\{i : \sigma_i > 0\}$$
 (number of nonzero singular values)
 $\|X\|_* = \sum_i \sigma_i$ (sum of singular values)

Nuclear norm is surrogate for matrix rank, i.e. we approximate rank(X) $\approx ||X||_*$

- Rank function is nonconvex and NP-hard to minimize
- Nuclear norm is tightest convex relaxation of rank
- Surrogate problems with this convex relaxation can be efficiently solved

Proximal Operator and Decomposition

The proximal operator for a function ϕ is

$$\operatorname{prox}_{\phi}(x) = \operatorname{argmin}_{z} \phi(z) + \frac{1}{2} \|z - x\|^{2}.$$

This generalizes the projection onto a set C:

$$\operatorname{proj}_{\mathcal{C}}(x) = \underset{z \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{2} \|z - x\|^{2}.$$

Theorem 1^{\dagger} For a norm $\|\cdot\|$ and $\lambda > 0$, the proximal can be decomposed via

$$\operatorname{prox}_{\lambda \| \cdot \|}(x) = x - \lambda \operatorname{proj}_{\mathcal{C}}\left(\frac{x}{\lambda}\right),$$

where $C = \{z : ||z||^* \le 1\}$ and $||\cdot||^*$ is the norm dual to $||\cdot||$.

[†]See Theorem 6.46 and Example 6.47 in Beck's First-Order Methods in Optimization.

Projection of Matrix onto Unit Ball

Lemma 1 Let \mathcal{C} be the unit ball $\{Z: \|Z\|_2 \leq 1\}$. If $X = U\Sigma V^{\mathsf{T}}$, then

$$\operatorname{proj}_{\mathcal{C}}(X) = UDV^{\mathsf{T}}$$
, where $D = \operatorname{diag}(d_i)$ and $d_i = \min\{\sigma_i, 1\}$.

<u>Proof</u> Given a matrix Z, set $S = U^T Z V$ so that $Z = U S V^T$. Write S = D + M, where $D = \text{diag}(d_i)$ and any nonzeros of M are off-diagonal. This yields

$$\|Z - X\|_F^2 = \|U(S - \Sigma)V^{\mathsf{T}}\|_F^2 = \|S - \Sigma\|_F^2 = \|D - \Sigma\|_F^2 + \|M\|_F^2 \ge \|D - \Sigma\|_F^2.$$

As the inequality is strict for nonzero M, for optimal Z we have M=0. Thus,

$$\min_{\|Z\|_2 \le 1} \|Z - X\|_F^2 = \min_{\|D\|_2 \le 1} \|UDV^\top - X\|_F^2 = \min_{\|D\|_2 \le 1} \|D - \Sigma\|_F^2 = \min_{|d_i| \le 1} \sum_i (d_i - \sigma_i)^2.$$

Each diagonal entry d_i can be independently computed as $d_i = \min\{\sigma_i, 1\}$.

Proximal for Nuclear Norm

The soft-thresholding operator S_{λ} is an element-wise operator defined by

$$S_{\lambda}(X)_{ij} = \operatorname{sign}(X_{ij}) \cdot \max\{|X_{ij}| - \lambda, 0\}.$$

When X is nonnegative, this simplifies to

$$S_{\lambda}(X)_{ij} = \max\{X_{ij} - \lambda, 0\}.$$

Theorem 2 Given a matrix X with SVD $U\Sigma V^{\top}$ and scalar $\lambda > 0$, the nuclear norm proximal operator is given by

$$\operatorname{prox}_{\lambda\|\cdot\|_*}(X) = U S_{\lambda}(\Sigma) V^{\mathsf{T}}.$$

Theorem 2 Proof

By the decomposition in Theorem 1,†

$$\operatorname{prox}_{\lambda \|\cdot\|_*}(X) = X - \lambda \operatorname{proj}_{\mathcal{C}}\left(\frac{X}{\lambda}\right),$$

where ${\cal C}$ is as in Lemma 1. Applying Lemma 1 yields

$$\lambda \operatorname{proj}_{\mathcal{C}}\left(\frac{X}{\lambda}\right) = UDV^{\mathsf{T}}, \quad \text{where } D = \operatorname{diag}(d_i) \text{ and } d_i = \begin{cases} \sigma_i & \text{if } \sigma_i \leq \lambda \\ \lambda & \text{otherwise.} \end{cases}$$

Thus,

$$\operatorname{prox}_{\lambda\|\cdot\|_*}(X) = X - UDV^{\top} = U(\Sigma - D)V^{\top} = US_{\lambda}(\Sigma)V^{\top}.$$

[†]The spectral norm is dual to the nuclear norm.

Toy Example

Consider the matrix

$$X = \begin{bmatrix} 0 & 3 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = U \Sigma V^{\mathsf{T}}$$

For $\lambda = 2$, the nuclear norm proximal for X is

$$\operatorname{prox}_{2\|\cdot\|_{*}}(X) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Toy Example (Continued)

Rank Minimization and Sparsity

For a vector x, notions of sparsity and ℓ_1 norm are related:

$$||x||_0 = \#\{i : x_i \neq 0\}$$
 (number of nonzero values)
 $||x||_1 = \sum_i |x_i|$ (sum of absolute values)

Rank minimization and sparsity promotion share analogous approximations, which have analogous proximal operators:

$$\operatorname{prox}_{\lambda \| \cdot \|}(x) = S_{\lambda}(x)$$

 $\operatorname{prox}_{\lambda \| \cdot \|_{*}}(X) = U S_{\lambda}(\Sigma) V^{\top}$

Takeaways

- Nuclear norm is for low-rank matrices like ℓ_1 is for sparse vectors
- The nuclear norm proximal formula is $\operatorname{prox}_{\lambda\|\cdot\|_*}(X) = U S_{\lambda}(\Sigma) V^{\top}$
- Proximal decomposition results can be helpful in deriving proximal formulas

Found this useful?

- + Follow for more
- Share with friends

Building and need optimization help?

Let's connect

References

- Cai, Candés, Shen. A Singular Value Thresholding Algorithm for Matrix Completion. 2008.
- Cai, Osher. Fast Singular Value Thresholding without Singular Value Decomposition. 2010.
- Beck. First-Order Methods in Optimization. 2017.